Wednesday, February 29, 2012

IPv6 for LIRs

March 2012

IANA IPv4 Pool

Reaching the next billion

- Around 2 billion Internet users now
 - around 30% of all people

Mobile phones are becoming Internet devices

The Internet of things

Schedule

• 09:00 - 09:30 Coffee, Tea

• 11:00 - 11:15 Break

• 13:00 - 14:00 Lunch

• 15:00 - 15:15 Break

• 17:30 End

Introductions

- Name
- Number in the list
- Experience with the RIPE NCC
- Goals

Overview

- The Registry System
- IPv4?
- The road to IPv6
- IPv6 Address Basics
- Transition Mechanisms
- Exercise: Addressing Plan
- Getting it
- Exercise: Making Assignments
- Deploying
- Exercise: Deployment Challenges
- Real Life IPv6 Deployment
- Tips

0:11330100:13 315193.00 193.0.0.1

The Registry System

IP Address Distribution

Registration

Conservation

Aggregation

IPv4?

Our Slice of the IPv4 Pie

Wait and See?

Reduced Assignment Periods

- Used to be: 24 months
- January 2010: 12 months
- July 2010: 9 months
- January 2011: 6 months
- July 2011: 3 months

Hot IPv4 / IPv6 Policy Topics

- Allocations from the last /8 (2010-02)
 - new and existing LIRs can receive only one /22 allocation
 - only if they already have an IPv6 allocation!

RIPE Document: RIPE-530

RIPE Policy Proposal 2011-04

- Extension of the Minimum Size for IPv6
 Initial Allocation
 - Proposes initial allocation up to a /29
 - For example, for small LIRs to deploy IPv6 via 6RD (RFC 5969)

- Proposal currently in Review Phase
 - The RIPE NCC is working on impact analysis

Transfer of IPv4 Allocations

- Policy 2007-08: Allocation Transfer Policy
 - Don't buy your IPv4 on eBay!

- Transfer unused allocations to another LIR
- Minimum allocation size /21
- Evaluated by RIPE NCC
- Update in RIPE Database

https://www.ripe.net/lir-services/resource-management/listing/

Network Address Translation

- Extends the capacity of the IPv4 address space by sharing an IPv4 address between clients
- Fairly common technology, used everywhere
- Breaks the end to end connectivity model
- It doesn't allow communication with IPv6!
- You are probably going to need it in some form

Large Scale NAT

193.0.0.1

The road to IPv6

There Was a Plan

- The original idea was to have IPv6 deployed before we were out of IPv4 addresses
- By now the whole of the Internet should have been dual-stacked
- And we wouldn't be here today.

IPv6 is the End Goal

- Exhaustion of the IPv4 free pool is a permanent problem
- The only way to support the future growth of the Internet is by deploying IPv6
- This will take time, so an intermediate solution has to be found
- Eventually, be prepared to switch off IPv4

Dual Stack while you can

Transitioning Techniques

 The IETF has several RFCs and active drafts, and some that have been abandoned already:

```
6in4 NAT64
6to4 DS-lite
Teredo A+P
6RD 4RD
ISATAP SIIT
TSP TRT
6over4 NAT-PT
IVI
```

Solving Two Problems

- Maintaining connectivity to IPv4 hosts by sharing IPv4 addresses between clients
 - Extending the address space with NAT/CGN/LSN
 - -Translating between IPv6 and IPv4
- Provide a mechanism to connect to the emerging IPv6-only networks
 - Tunneling IPv6 packets over IPv4-only networks

315193.00 193.0.0.1 Wednesday, February 29, 2012

IPv6 Address Basics

IPv6 Address Basics

- IPv6 address: 128 bits
 - 32 bits in IPv4
- Every subnet should be a /64
- Customer assignments (sites) between:
 - /64 (1 subnet)
 - /48 (65,536 subnets)
- Minimum allocation size /32
 - 65,536 /48s
 - 16,777,216 /56s

IPv6 Subnetting

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:ef11:0:0:c100:4d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:ef11:0:0:c100:4d

2001:db8:3e:ef11::c100:4d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:ef11:0:0:c100:4d

2001:db8:3e:ef11::c100:4d

Multiple addresses

Addresses	Range	Scope
Loopback	::1	host
Link Local	fe80::/10	link
Unique Local	fc00::/7	global
Global Unicast	2000::/3	global
6to4	2002::/16	global
Teredo	2001::/32	global
Multicast	ff00::/8	variable

Wednesday, February 29, 2012

Exercise

IPv6 Address Notation

Transition Mechanisms

Transitioning: Two Main Methods

- Transporting IPv6 in IPv4
 - -6in4
 - -6to4
 - Teredo
 - -6RD
- Translating IPv6 into IPv4
 - NAT64/DNS64

6in4

- Manually configured tunnels towards a fixed tunnel broker like SixXS, Hurricane Electric or your own system
- Stable and predictable but not easily deployed to the huge residential markets
- MTU might cause issues

6in4

6to4 and Teredo

• 6to4

- "Automatic" tunnel, system can configure itself
- IPv4 address is part of the IPv6 address
- Requires a public IPv4 address
- Uses anycast to reach a nearby server
- Return traffic might choose another server

Teredo

- Uses UDP to encapsulate packets
- Works across (most) NAT implementations

6to4 and Teredo

6RD

- Quite similar to 6to4
 - Encodes the IPv4 address in the IPv6 prefix
- Uses address space assigned to the operator
- The operator has full control over the relay
- Traffic is symmetric across a relay
 - Or at least stays in your domain
- Can work with both public and private space
- Needs additional software for signaling

6RD

NAT64/DNS64

- Single-stack clients will only have IPv6
- Translator box will strip all headers and replace them with IPv4
- Requires some DNS "magic"
 - Capture responses and replace A with AAAA
 - Response is crafted based on target IPv4 address
- Usually implies address sharing on IPv4

NAT64/DNS64

DS-lite

- Tunneling IPv4 over IPv6
- Allows clients to use RFC1918 addresses without doing NAT themselves
- NAT is centrally located at the provider
- Client's IPv6 address is used to maintain state and to keep clients apart
 - Allows for duplicate IPv4 ranges

DS-lite

Exercise

Addressing Plan

Addressing Plan Exercise

- Things to consider
 - administrative ease!
 - use assignments on 4 bit boundary
 - 2 possible scenarios for network
 - 5 possible scenarios for customer assignments

- 40 minutes preparation time
- 15 minutes discussion

Addressing Plans

- Number of hosts is irrelevant
- Multiple /48s per pop can be used
 - separate blocks for infrastructure and customers
 - document address needs for allocation criteria
- Use one /64 block per site for loopbacks
- /64 for all subnets
 - autoconfiguration works
 - renumbering easier
 - less typo errors because of simplicity

More On Addressing Plans

- For private networks, get ULA
- For servers you might want manual config
- Use port numbers for addresses
 - pop server 2001:db8:1::110
 - dns server 2001:db8:1::53
 - etc...

Getting it

Getting an IPv6 allocation

- To qualify, an organisation must:
 - Be an LIR
 - Have a plan for making assignments within two years

Minimum allocation size /32

 Allocation size is based on customer numbers and growth, not on transition technique!

IPv6 Allocations and Announcements

IPv6 Allocations and Announcements

IPv6 Allocations and Announcements

IPv6 Ripeness

- Rating system:
 - One star if the LIR has an IPv6 allocation

- Additional stars if:
 - IPv6 Prefix is announced on router
 - A route6 object is in the RIPE Database
 - Reverse DNS is set up

- A list of all 4 star LIRs: http://ripeness.ripe.net/

IPv6 RIPEness: 7964 LIRs

What does an IPv6 allocation cost?

- /32 = 1 scoring unit
- /31 = 2 scoring units
- points = $\sum (2012-1992)x(scoring unit) = 20x1+...$

Category	Points	Fee 2012
Extra Small	0 - 16	€ 1300
Small	- 109	€ 1800
Medium	- 1040	€ 2550
Large	- 7728	€ 4100
Extra Large	> 7728	€ 5500

What does an IPv6 allocation cost?

- /32 = 1 scoring unit
- /31 = 2 scoring units
- points = $\sum (2012-1992)x(sccrir) u = 20x1 ...$

Getting IPv6 PI address space

- To qualify, an organisation must:
 - Meet the contractual requirements for provider independent resources
 - LIRs must demonstrate special routing requirements
- Minimum assignment size /48

PI space can not be used for sub-assignments

Customer assignments

- Give your customers enough addresses
 - Up to a /48

- For more addresses, send in request form
 - Alternatively, make a sub-allocation

 Every assignment must now be registered in the RIPE database

Using AGGREGATED-BY-LIR

/48

/48

/48

/48

Group assignments in the RIPE DB

inet6num: 2001:db8:1000::/36

netname: Bluelight

descr: We want more Bluelight B.V.

descr: Colocation services

country: NL

admin-c: BN649-RIPE

tech-c: BN649-RIPE

status: AGGREGATED-BY-LIR

assignment-size: 48

mnt-by: BLUELIGHT-MNT

notify: noc@example.net

changed: noc@example.net 20110218

source: RIPE

Exercise

Making Assignments

Making Assignments Exercise

Fridge6!

- 40 minutes preparation time
- 10 minutes discussion

Solution RIPE Database object

inet6num: 2001:db8:1000::/40

netname: FREEZ

descr: Freez Fridges

country: NL

admin-c: RM1204-RIPE

tech-c: RM1204-RIPE

status: AGGREGATED-BY-LIR

assignment-size: 60

mnt-by: BLUELIGHT-MNT

notify: noc@freez.net

changed: noc@freez.net 20110801

source: RIPE

193.0.0.1

Deploying

IPv6 Stateless Address Autoconfiguration

- Host will automatically start looking for a router
- Response will contain:
 - Router's address

DHCPv6

- You can use DHCPv6 to get information like DNS servers
- Router message contains hints
 - If a DHCPv6 server is present
 - If the use of DHCPv6 is mandatory to get an address, the so called "managed" flag
 - Optionally the address of a DNS server (RFC 6106)
- With manual configuration subnet sizes other than /64 are possible, but please think twice

Interfaces will have multiple addresses

- Unicast
 - Link Local fe80::5a55:caff:fef6:bdbf/64
 - Global Unicast 2001::5a55:caff:fef6:bdbf/64 (multiple)
- Multicast
 - All Nodes ff02::1 (scope: link)
 - Solicited Node ff02::1:fff6:bdbf (scope: link)

- Routers
 - All Routers ff02::2 (scope: link)

DNS in IPv6 is difficult?

- DNS is not IP layer dependent
- A record for IPv4
- AAAA record for IPv6

- Don't answer based on incoming protocol
- Only challenges are for translations
 - NAT64, proxies

2001:db8:3e:ef11::c100:4d

2001: db8: 3e:ef11: :c100: 4d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d

8.b.d.0.1.0.0.2.ip6.arpa

2001:0db8:003e:ef11:0000:0000:c100:004d

8.b.d.0.1.0.0.2.ip6.arpa

d.4.0.0.0.0.1.c.0.0.0.0.0.0.0.0.0.1.1.f.e.e. 3.0.0.8.b.d.0.1.0.0.2.ip6.arpa PTR yourname.domain.tld.

2001:0db8:003e:ef11:0000:0000:c100:004d

8.b.d.0.1.0.0.2.ip6.arpa

d.4.0.0.0.0.1.c.0.0.0.0.0.0.0.0.0.1.1.f.e.e. 3.0.0.8.b.d.0.1.0.0.2.ip6.arpa PTR yourname.domain.tld.

d.4.0.0.0.1.c.0.0.0.0.0.0.0.0.1.1.f.e.e.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa PTR yourname.domain.tld.

IPv6 in the Routing Registry

Route6 object:

route6: 2001:db8::/32

origin: AS65550

Aut-num object:

aut-num: AS65550

mp-import: afi ipv6.unicast from AS64496 accept ANY

mp-export: afi ipv6.unicast to AS64496 announce AS65550

Security considerations

- Privacy Extensions for Address Configuration in IPv6 - RFC 4941
- Secure Neighbor Discovery (SEND)
 - http://tools.ietf.org/html/rfc3971
- RA (Router Advertisement) Guard
 - http://tools.ietf.org/html/rfc6105

Wednesday, February 29, 2012

Exercise

Deployment Challenges

Deployment Challenges

- Think of 5 challenges/problems your organisation could have when you deploy IPv6 and write them on the exercise sheet
- Let's see if you can find solutions!

- 10 minutes for challenges
- 10 minutes for solutions

000:130e3 19.F2:80:119 68:1095

Real Life IPv6 Deployment

Colocation Provider

- 30 staff
- Routing
 - Dual stack or separate routers?
 - Possible IGP combinations are:
 - OSPFv2 for IPv4, IS-IS for IPv6 (only)
 - OSPFv2 for IPv4, OSPFv3 for IPv6
 - IS-IS for IPv4, OSPFv3 for IPv6
 - IS-IS for both IPv4 and IPv6 (their solution)
 - Check internal routing before going external!

Colocation Provider

- Checklist
 - set access lists on network equipment
 - set up monitoring (SNMP)
 - have working DNS
- Subnetting tools
 - sipcalc, IPv6calc
- Every customer gets a /48 assignment
 - and a /64 for the connection

Colocation Provider

- Points of attention:
 - stateless auto configuration can assign a subnet "unexpected"
 - Google IPv6 whitelist
 - not all firewalls support IPv6
 - be careful with statement "IPv6 ready"

ISP xDSL

- 200 staff
- 2 /32 prefixes (due to merger)
 - not enough
 - make a plan before request allocation

- /48 per POP
- /56 per router
- /64 per customer vlan

ISP xDSL

- Servers
 - no EUI-64
 - no autoconfig
 - port number for services (i.e. POP3 at ::110)
 - default gateway manually set to :1/64 (usually)

ISP xDSL

- Network links (point-to-point)
 - core
 - /64 per link
 - ::1 ::2
 - no auto configuration
 - easy to remember

You don't want your router link at:

2001:DB8:CF9D:7631:CD01:FE55:4532:AE60/127

You want your router link at:

2001:DB8:1:1::/127

193.0.0

Tips

Best Scenario: Act Now, Phased Approach

- Change purchasing procedure (feature parity)
- Check your current hardware and software
- Plan every step and test
- One service at a time
 - face first
 - core
 - customers
- Prepare to be able to switch off IPv4

Don'ts

Don't separate IPv6 features from IPv4

Don't do everything in one go

- Don't appoint an IPv6 specialist
 - do you have an IPv4 specialist?

- Don't see IPv6 as a product
 - the Internet is the product

Business Case

- IPv4 is no longer equal to "the Internet"
- Avoiding the issue does not make it go away
- How much are you willing to spend now to save money later?
- Only IPv6 allows continued IP networking growth
- What do you want the Internet to be like in 5 years?

"IPv6, act now!"

Also useful

Websites

- http://www.getipv6.info/
- http://datatracker.ietf.org/wg/v6ops/
- http://www.ripe.net/ripe/docs/ripe-501.html

Mailing lists

- http://lists.cluenet.de/mailman/listinfo/ipv6-ops
- http://www.ripe.net/mailman/listinfo/ipv6-wg

Customer Premises Equipment Survey

- CPE devices that support IPv6
- Based on feedback from users
- Use it as a guide
- labs.ripe.net: search for 'IPv6 CPE'

Customers And Their /48

- Customers have no idea how to handle 65536 subnets!
- Provide them with information
 - https://www.ripe.net/lir-services/training/material/IPv6-for-LIRs-Training-Course/IPv6_addr_plan4.pdf

Survey!

http://www.ripe.net/training/lir/survey

Follow us!

The End! Y Diwedd Край Fí **Finis** Соңы Liðugt **Ende Finvezh** Кінець Ënn **Fund Konec** Kraj Son Kpaj Beigas Lõpp Vége An Críoch **Endir Fine Sfârşit** Τέλος Fin **Einde** Конец Slut Slutt დასასრული **Pabaiga Tmiem Koniec Amaia** Loppu **Fim**