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Designed as an interactive talk, please interrupt to ask questions.



Advantages and Disadvantages of Distributed Version
Control Systems (DVCS)

Advantages:
I Every developer has a complete copy of the public history

I Enables working offline
I Commands much faster
I Implicit protection against manipulation

I No «single point of failure»
I Server offline, disgruntled developer, security breach . . .

I Allows any workflow
I For enterprises: centralised workflow

Disadvantages:
I Lots of freedom, appropriate policies must be established
I Slightly more complex setup



Autonomy of local Repositories

I Remote and local repository are not
that different

I Exchange between repositories via
push/pull

I Push: Upload own changes
I Pull: Download other peoples

changes

I Everything else happens only locally



Git Special Fetaures

Git has a number of special features, understanding them is
paramount to effective use

I Staging Area
I Object Model
I Commit Graph



Staging Area

I Git allows you to assemble a commit incrementally
I First add hunks to the stage, then commit everything in the

stage

I Has many names: stage, index, cache.
I Very relevant for everyday work



Object Model

Imagine we wish to track the following repository:
/

hello.py
README
test/

test.sh

http://krzz.de/3u



Git-Objects

I Blob: contents of a file
I Tree: collection of blobs and other trees
I Commit: reference to a tree and metadata

I Author and Commiter, Parents, Commit-Message, etc..



Content Addressable System

I Each object has a unique identifier, its SHA-1
I ... is Calculated from its content
I ... allows retrieval using this identifier

I Importantly each Commit object contains the SHA-1 of its
parent(s)

I Objects stored in an object storage (files on disk)
I Implements de-duplication



Building History from Objects



Object Database

$ git cat-file commit e2c67ebb6d2db2aab831f477306baa44036af635
tree a26b00aaef1492c697fd2f5a0593663ce07006bf
parent 8e2f5f996373b900bd4e54c3aefc08ae44d0aac2
author Valentin Haenel <valentin.haenel@gmx.de> 1294515058 +0100
committer Valentin Haenel <valentin.haenel@gmx.de> 1294516312 +0100

Kommentar fehlte

$ git ls-tree a26b00aaef1492c697fd2f5a0593663ce07006bf
100644 blob 6cf9be8017a937ca9f442290bcc8b2db13f12ab4 README
100644 blob 52ea6d6f53b2990f5d6167553f43c98dc8788e81 hello.py
040000 tree c37fd6f7d4f9619448f0feafec09ef5d18b58712 test

$ git cat-file blob 52ea6d6f53b2990f5d6167553f43c98dc8788e81
#! /usr/bin/env python

""" Hello World! """

print ’Hello World!’



Commit Graph



So What about Branches

I Now that we have an implicit graph structure, branches
become obvious

I Pointers into the commit-graph
I Updated when new commits are added
I Tags are like branches but don’t get updated



Commit Graph



Cheap and Effective Branching

I Absolutely git’s killer feature!
I The problem isn’t the branching, it’s the merging
I Merge basis derived from graph
I An intermediate user will create (and merge!) multiple

branches on one day
I Branches are mostly local, no one sees your mess



Visualization

I Since the history is a graph, it’s important to visualise it
I There are many tools for this job

I Gitk
I Gitx

I Also: tig, git-big-picture, gitg, qgit, ...
I See the git-wiki for more open-source and commercial

alternatives



Summary

I Git commands manipulate the graph structure
I Create new bifurcations
I Add/Move/Remove nodes

Questions?



Introduction

I The basic interface to git is the command-line
I Git uses subcommands
I There are porcelain and plumbing commands
I GUIs exist and are quite functional (so I’ve been told)

I Will «whizz» through the list of most important commands
I Shout if you are unfamiliar with these or want them

demonstrated



Initialisation

I git init
I git clone



Configuration and Information

I git config
I git status
I git help



Index and Commits

I git add
I git commit
I git reset



Branch manipulation

I git checkout
I git branch
I git merge



Inspection

I git log
I git diff



Remote Interaction

I git remote
I git fetch
I git pull
I git push



Extended

I git mv
I git rm
I git alias
I git bisect
I git revert
I git shortlog
I git reflog
I git cherry-pick
I git format-patch
I git send-email
I git am



... And More

I git describe
I git tag
I git grep
I git stash
I git submodule
I git subtree
I git show
I git rebase
I git filter-branch
I git gc
I git svn

... and so on ... (around 200 commands)



Common Pitfalls (1)

Forgetting to git push and dropping your laptop
I Work may be lost on a broken hard drive
I Push at regular intervals
I Don’t drop your laptop

Incorrect use of git reset --hard
I Think before you use --hard
I Just try not to use it all the time



Common Pitfalls (2)

Deleting stash by accident
I The last paragraph in the git stash manpage shows how to

find deleted stashes

Incorrect use of git clean -dfx
I Removal of unstaged files



Common Pitfalls (3)

I Any history rewriting git rebase and git filter-branch

I Also try: git reflog

I See also: http://gael-varoquaux.info/blog/?p=137



Famous Last Words

I You don’t need to know all the commands
I Once you understand concepts, the commands make sense
I The learning curve might be a bit steep
I There are lots of books/websites/forums/chats etc.
I Main entry-point: http://git-scm.com/

Good Luck!
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