Difference between revisions of "Extension Explorer 16"

From Fixme.ch
Jump to: navigation, search
(Calculation)
(Datas)
Line 134: Line 134:
 
=== Datas ===
 
=== Datas ===
  
* U_POW = 12V DC --> choice concerning the power supply of LED segments
+
* U_POW = Vcc = 12V DC --> choice concerning the power supply of LED segments
* U_LED = 2V DC --> voltage on once leds  
+
* U_LED = 2V DC               --> voltage on once leds  
* I_LED = 20mA   --> current use by once led  
+
* U_SEG = 5*U_LED = 5*2V = 10V --> voltage on once segment 
 +
* I_LED = 20mA                 --> current use by once led
  
 
=== Calculation ===  
 
=== Calculation ===  

Revision as of 20:10, 4 November 2015

Description

In French: Création d'une carte d'extension pour la carte Explorer (PROJET: Carte Explorer 16 & Exos sur les uC).

  • V1: un montage permettra de simuler un carrefour routier, composer de 4 feux (RGB)
  • V2: montage permettant d'allumer séquentiellement des leds pour afficher le nom de FIXME


in English: creation of one extansion board for the Explorer Board (see the links above)

  • V1: assembly will allow to simulate a crossroad (4 fires (RGB))
  • V2: assembly allowing to display sequentially the leds to screen FIXME

Digram - Schematic

Cross Light Part

LEDS DISPLAY FIXME

Part Calculation of Electronics Digram

LED's for crossroad

  • the datasheet of the DSP implemented on the Explorer Board 16 (see pages 1 & 273) indicates that :
    • output current of I/O : I = 10mA
    • voltage I/O : VDD = 3.3V
  • the datasheet of the red LED (see pages 3) indicates that :
    • conduction voltage : ULR = VF = 1.8V
    • average current : I = 20mA
  • the datasheet of the orange LED (see pages 3 / 4 / 5) indicates that :
    • conduction voltage : ULO = VF = 1.9V
    • average current : I = 30mA
  • the datasheet of the green LED (see pages 3 / 4 / 5) indicates that :
    • conduction voltage : ULG = VF = 2.2V
    • average current : I = 30mA

Formula

  • calculation of resistance R_LED_R :


R_{LED_R}=\frac{U_r}{I}=\frac{V_{DD}-U_{LR}}{I}=\frac{3.3V-1.8V}{10mA}
= 150 Ω

  • power dispersed by the resistance P_R_LED_R :


P_{R_{LED_R}}=\frac{R_{LED_R}^2}{I}=\frac{150^{2}}{10mA}
= 15 mW

  • calculation of resistance R_LED_O :


R_{LED_O}=\frac{U_r}{I}=\frac{V_{DD}-U_{LO}}{I}=\frac{3.3V-1.9V}{10mA}
= 140 Ω

  • power dispersed by the resistance P_R_LED_O :


P_{R_{LED_O}}=\frac{R_{LED_O}^2}{I}=\frac{140^{2}}{10mA}
= 14 mW

  • calculation of resistance R_LED_G :


R_{LED_G}=\frac{U_r}{I}=\frac{V_{DD} - U_{LG}}{I}=\frac{3.3V-2.2V}{10mA}
= 110 Ω

  • power dispersed by the resistance P_R_LED_G :


P_{R_{LED_G}}=\frac{R_{LED_G}^2}{I}=\frac{110^{2}}{10mA}
= 11 mW

Switch for crossroad

  • the datasheet of the DSP implemented on the Explorer Board 16 (see pages 1, 278, 279) indicates that :
    • output current of I/O : I_output = 10mA
    • input current of I/O : I_output max = 5mA
    • voltage I/O : VDD = 3.3V
    • leakage current of I/O : 2uA
    • low state ('0') in voltage : 0,2 * VDD

Formula

  • voltage seens by the input of uC when it's a low state VDD_low :


VDD_{low} = VDD \cdot 0.2 = 3.3 \cdot 0.2 
= 0.66 V

  • Resitor seens by the input of uC when it's a low state RIN_low :


RIN_{low} = \frac{VDD_{low}}{I_L} = \frac{0.66}{2u} 
= 330 kΩ

  • Resitor Pull-Up MAX :


R_{Pull-Up_{max}} = \frac{VDD - VDD_{low}}{I_L} = \frac{3.3 - 0.66}{2u} 
= 1.32 MΩ

Remark : the resistor must be more less that the R_PULL-UP_max - usually, the value of 10kohm is using for the resistor pull-up.

  • Current using when the switch is closed


I_{R_{Pull-Up}} = \frac{VDD - VDD_{low}}{R_{Pull-up}} = \frac{3.3 - 0.66}{10k} 
= 264 uA

  • power dispersed by the resistance push-pull when the switch is actived


P_{R_{Pull-Up}} = (VDD - VDD_{low}) \cdot I_{R_{Pull-Up}} = (3.3V - 0.66V)\cdot 262uA  
= 696.96 uW

LEDS For DSIPLAY FIXME

Details arround the LED Segment

In French : pour cette partie du projet, le choix s'est porté sur des multi leds de type L-132CB, le but est que tous les segments verticaux s'allument en meme temps et tous les leds horizontales s'allume une après l'autre. Pour les segments verticaux, si on chaîne les 5 leds du segment (série), on obtient du 10V sur les 5 leds... donc il faut prévoir pour le montage une alimentation 12V DC qui tienne 1A au minimum. Pour les segments horizontaux, c'est qu'une led par segment qui sera alimenté -> 2V par led.

IN English: For this part of the project, the choice was carried on the multi LED L-132CB, the goal is that all vertical segment display in same time ans the horizontal leds display one after the others. For the vertical sgment, the leds will be chained in serial (5 leds -> 10V). For this assembly to provide for the power, a voltage of 12V. For the horizontal segment, there will have only 1 led supplied (2V).

to see more details, check the schematics part !!!

Datas

  • U_POW = Vcc = 12V DC --> choice concerning the power supply of LED segments
  • U_LED = 2V DC --> voltage on once leds
  • U_SEG = 5*U_LED = 5*2V = 10V --> voltage on once segment
  • I_LED = 20mA --> current use by once led

Calculation

Resistor in end line for vertical sgement

if the segment is alone, the end line resistor is of (example each element of the X letter) :


R_{1Seg} = \frac{Vcc - U_{seg}}{I_{LED}} = \frac{12V - 10V}{20mA}
= 100 Ω

Power dissipated by the resistor Rseg:


P_{R_{1Seg}} = R_{1Seg} \cdot I_{Led}^2 = 100 \cdot (20mA)^2 
= 40 mW

The choice for the resistor(s) value is : 100 Ω 1/4W

if the segments are linked by two, the end line resistor is of (example for the F, I, M, E letters) :


R_{1Seg} = \frac{Vcc - U_{seg}}{I_{LED_{Seg1}} + I_{LED_{Seg2}}} = \frac{12V - 10V}{20mA + 20mA}
= 50 Ω

Power dissipated by the resistor Rseg:


P_{R_{1Seg}} = R_{1Seg} \cdot (2*I_{Led})^2 = 100 \cdot (40mA)^2 
= 80 mW

The choice for the resistor(s) value is : 51 Ω 1/4W

Resistor in end line for horizontal sgement

if the segment is alone, the end line resistor is of (example each element of the M letter) :


R_{1LED} = \frac{Vcc - U_{seg_{LED}}}{I_{LED}} = \frac{12V - 2V}{20mA}
= 500 Ω

Power dissipated by the resistor R_LED:


P_{R_{1LED}} = R_{1LED} \cdot I_{Led}^2 = 500 \cdot (20mA)^2 
= 200 mW

The choice for the resistor(s) value is : 510 Ω 1/4W

if the segments are linked by two, the end line resistor is of (example for the F letter) :


R_{LEDs} = \frac{Vcc - U_{LED}}{I_{LED1} + I_{LED2}} = \frac{12V - 2V}{20mA + 20mA}
= 250 Ω

Power dissipated by the resistor RLED_2:


P_{R_{LEDs}} = R_{LEDs} \cdot (2*I_{Led})^2 = 250 \cdot (40mA)^2 
= 400 mW

The choice for the resistor(s) value is : 270 Ω 1/2W

if the segments are linked by three, the end line resistor is of (example for the E letter) :


R_{LEDs} = \frac{Vcc - U_{LED}}{I_{LED1} + I_{LED2} + I_{LED3}} = \frac{12V - 2V}{20mA + 20mA +20mA}
= 167 Ω

Power dissipated by the resistor RLED_3:


P_{R_{LEDs}} = R_{LEDs} \cdot (3*I_{Led})^2 = 250 \cdot (60mA)^2 
= 601,2 mW

The choice for the resistor(s) value is : 180 Ω 1W

Layout

BOM - Bill of Material

Cross Fire Part

BOM for the Feux Tricolor
Designation Nb de composants Fournisseur Référence Prix
Led Rouge 5mm 4 Farnell 2112111 0.307 CHFrs /pieces
Led Rouge SMD (option) 4 Farnell 8554641 0.0982 CHFrs /5pieces
Led Orange 5mm 4 Farnell 1003212 0.257 CHFrs /pieces
Led Orange SMD (option) 4 Farnell 8554552 0.537 CHFrs /5pieces
Led Verte 5mm 4 Farnell 2217954 0.368 CHFrs /pieces
Led Verte SMD (option) 4 Farnell 8554609 0.326 CHFrs /5pieces
Resistance SMD 110 ohm 100mW 4 Farnell 2351021 0.01 CHFrs /pieces
Resistance SMD 140 ohm 100mW 4 Farnell 2351049 0.01 CHFrs /pieces
Resistance SMD 150 ohm 100mW 4 Farnell 9332596 0.0734 CHFrs / 50pieces
Resistance SMD 10kohm 100mW 4 Farnell 9332391 0.082 CHFrs / 50pieces
Commutateur Tactile 1 Farnell 1555985 0.155 CHFrs /pieces
Connecteur 120pin 1 Digikey MEC1-160-02-S-D-A or MEC1-160-02-F-DEM2 9.3 $/pieces

LED DISPLAY FIXME

BOM for the Feux Tricolor
Designation Nb de composants Fournisseur Référence Prix
MULTI LEDS (5 led par boitier) L-132CB 21 Farnell 1208841 3.75 CHF/pieces

A venir

Assembly

Tests

Modification

Documentation

PDF FILE

required links

Contributor